Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1165113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600199

RESUMO

Introduction: Salinity is the abiotic obstacle that diminishes food production globally. Salinization causes by natural conditions, such as climate change, or human activities, e.g., irrigation and derange misuse. To cope with the salinity problem, improve the crop environment or utilize crop/wheat breeding (by phenotyping), specifically in spread field conditions. For example, about 33 % of the cropping area in Egypt is affected by salinity. Methods: Therefore, this study evaluated forty bread wheat genotypes under contrasting salinity field conditions across seasons 2019/20 and 2020/21 at Sakha research station in the north of Egypt. To identify the tolerance genotypes, performing physiological parameters, e.g., Fv/Fm, CCI, Na+, and K+, spectral reflectance indices (SRIs), such as NDVI, MCARI, and SR, and estimated salinity tolerance indices based on grain yield in non-saline soil and saline soil sites over the tested years. These traits (parameters) and grain yield are simultaneously performed for generating GYT biplots. Results: The results presented significant differences (P≤0.01) among the environments, genotypes, and their interaction for grain yield (GY) evaluated in the four environments. And the first season for traits, grain yield (GY), plant height (PH), harvest index (HI), chlorophyll content index (CCI), chlorophyll fluorescence parameter Fv/Fm, normalized difference vegetation index (NDVI) in contrasting salinity environments. Additionally, significant differences were detected among environments, genotypes, and their interaction for grain yield along with spectral reflectance indices (SRIs), e.g., Blue/Green index (BIG2), curvature index (CI), normalized difference vegetation index (NDVI), Modified simple ratio (MSR). Relying on the genotype plus genotype by environment (GGE) approach, genotypes 34 and 1 are the best for salinity sites. Genotypes 1 and 29 are the best from the genotype by stress tolerance indices (GSTI) biplot and genotype 34. Genotype 1 is the best from the genotype by yield*trait (GYT) method with spectral reflectance indices. Discussion: Therefore, we can identify genotype 1 as salinity tolerant based on the results of GSTI and GYT of SRIs and recommend involvement in the salinity breeding program in salt-affected soils. In conclusion, spectral reflectance indices were efficiently identifying genotypic variance.

2.
ACS Omega ; 8(21): 18981-18989, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273637

RESUMO

An experiment was conducted to evaluate the effect of the age of a seedling and sources of nutrients on the growth and yield of sweet corn at SKUAST-K during Kharif-2020. The experiment was performed under a factorial arrangement in a randomized complete block design (RCBD) with three replications. Factor A was the age of the seedling with three levels, viz., 12-day-old seedlings, 22-day-old seedlings, and 32-day-old seedlings. Factor B was the source of nutrients with five levels, viz., control, recommended dose of fertilizer (RDF), 1/2 RDF + 12 t ha-1 farmyard manure, 1/2 RDF + 4 t ha-1 vermicompost, and 1/2 RDF + 2 t ha-1 poultry manure. The experiment was tested using variety Sugar-75 with a spacing of 75 × 20 cm2. The findings of this study indicated that the age of the seedling and sources of nutrients extended a significant influence on growth parameters, yield attributes, and yield of sweet corn. Significantly highest values for various growth parameters of sweet corn, viz., plant height, number of functional leaves, leaf area index (LAI), and dry matter accumulation from 30 days after transplanting up to the harvest, were noted by transplanting A2 seedlings (22 day old). A similar trend was observed for yield attributes and yield with higher values with transplanting A2 seedlings (22 day old). Plots fertilized with 1/2 RDF + 2 t ha-1 poultry manure registered a significantly higher plant height, leaf area index (LAI), dry matter accumulation, and number of functional leaves, which eventually resulted in a higher green cob yield and green fodder yield under the same treatment. Overall, this study indicated that among different ages of seedlings, transplanting A2 seedlings (22 day old) outperformed other seedling ages, and plots treated with 1/2 RDF + 2 t ha-1 poultry manure outperformed other treatments; a combination of both proved superior in realizing a higher yield and profitability with a benefit-cost ratio (BCR) of 6.57 under temperate climatic conditions.

3.
PeerJ ; 11: e15343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37366423

RESUMO

Globally, salinity and drought are severe abiotic stresses that presently threaten vegetable production. This study investigates the potential exogenously-applied glutathione (GSH) to relieve water deficits on Phaseolus vulgaris plants cultivated in saline soil conditions (6.22 dS m-1) by evaluating agronomic, stability index of membrane, water satatus, osmolytes, and antioxidant capacity responses. During two open field growing seasons (2017 and 2018), foliar spraying of glutathione (GSH) at 0.5 (GSH1) or 1.0 (GSH1) mM and three irrigation rates (I100 = 100%, I80 = 80% and I60 = 60% of the crop evapotranspiration) were applied to common bean plants. Water deficits significantly decreased common bean growth, green pods yield, integrity of the membranes, plant water status, SPAD chlorophyll index, and photosynthetic capacity (Fv/Fm, PI), while not improving the irrigation use efficiency (IUE) compared to full irrigation. Foliar-applied GSH markedly lessened drought-induced damages to bean plants, by enhancing the above variables. The integrative I80 + GSH1 or GSH2 and I60 + GSH1 or GSH2 elevated the IUE and exceeded the full irrigation without GSH application (I100) treatment by 38% and 37%, and 33% and 28%, respectively. Drought stress increased proline and total soluble sugars content while decreased the total free amino acids content. However, GSH-supplemented drought-stressed plants mediated further increases in all analyzed osmolytes contents. Exogenous GSH enhanced the common bean antioxidative machinery, being promoted the glutathione and ascorbic acid content as well as up-regulated the activity of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione peroxidase. These findings demonstrate the efficacy of exogenous GSH in alleviating water deficit in bean plants cultivated in salty soil.


Assuntos
Antioxidantes , Phaseolus , Antioxidantes/metabolismo , Phaseolus/metabolismo , Água/metabolismo , Glutationa/metabolismo , Solo
4.
Plants (Basel) ; 12(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37050158

RESUMO

One of the main environmental stresses that hinder crop development as well as yield is salt stress, while the use of signal molecules such as calcium (Ca) has a substantial impact on reducing the detrimental effects of salt on different crop types. Therefore, a factorial pot experiment in a completely randomized design was conducted to examine the beneficial role of Ca (0, 2.5, and 5 mM) in promoting the physiological, biochemical, and growth traits of the wheat plant under three salt conditions viz. 0, 30, and 60 mM NaCl. Foliar application of Ca increased the growth of salt-stressed wheat plants through increasing photosynthetic pigments, IAA, proline, and total soluble sugars contents and improving antioxidant enzymes in addition to non-enzymatic antioxidants glutathione, phenol and flavonoids, ß-carotene, and lycopene contents, thus causing decreases in the over-accumulation of free radicals (ROS). The application of Ca increased the activity of antioxidant enzymes in wheat plants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), which scavenge reactive oxygen species (ROS) and relieved salt stress. An additional salt tolerance mechanism by Ca increases the non-antioxidant activity of plants by accumulating osmolytes such as free amino acids, proline, and total soluble sugar, which maintain the osmotic adjustment of plants under salinity stress. Exogenous Ca application is a successful method for increasing wheat plants' ability to withstand salt stress, and it has a considerable impact on the growth of wheat under salt stress.

5.
Front Plant Sci ; 13: 987641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325561

RESUMO

Salinity is the primary environmental stress that adversely affects plants' growth and productivity in many areas of the world. Published research validated the role of aspartic acid in improving plant tolerance against salinity stress. Therefore, in the present work, factorial pot trials in a completely randomized design were conducted to examine the potential role of exogenous application of aspartic acid (Asp) in increasing the tolerance of wheat (Triticum aestivum L.) plants against salt stress. Wheat plants were sown with different levels of salinity (0, 30, or 60 mM NaCl) and treated with three levels of exogenous application of foliar spray of aspartic acid (Asp) (0, 0.4, 0.6, or 0.8 mM). Results of the study indicated that salinity stress decreased growth attributes like shoot length, leaf area, and shoot biomass along with photosynthesis pigments and endogenous indole acetic acid. NaCl stress reduced the total content of carbohydrates, flavonoid, beta carotene, lycopene, and free radical scavenging activity (DPPH%). However, Asp application enhanced photosynthetic pigments and endogenous indole acetic acid, consequently improving plant leaf area, leading to higher biomass dry weight either under salt-stressed or non-stressed plants. Exogenous application of Asp, up-regulate the antioxidant system viz. antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and nitrate reductase), and non-enzymatic antioxidants (ascorbate, glutathione, total phenolic content, total flavonoid content, beta carotene, lycopene) contents resulted in declined in reactive oxygen species (ROS). The decreased ROS in Asp-treated plants resulted in reduced hydrogen peroxide, lipid peroxidation (MDA), and aldehyde under salt or non-salt stress conditions. Furthermore, Asp foliar application increased compatible solute accumulation (amino acids, proline, total soluble sugar, and total carbohydrates) and increased radical scavenging activity of DPPH and enzymatic ABTS. Results revealed that the quadratic regression model explained 100% of the shoot dry weight (SDW) yield variation. With an increase in Asp application level by 1.0 mM, the SDW was projected to upsurge through 956 mg/plant. In the quadratic curve model, if Asp is applied at a level of 0.95 mM, the SDW is probably 2.13 g plant-1. This study concluded that the exogenous application of aspartic acid mitigated the adverse effect of salt stress damage on wheat plants and provided economic benefits.

6.
PeerJ ; 9: e11463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141469

RESUMO

Many agricultural regions in arid and semiarid climate zone need to deal with increased soil salinity. Legumes are classified as salt-sensitive crops. A field experiment was performed to examine the application of phosphorus (P) fertilizer source and rate on growth, chlorophylls and carotenoid content, DNA and RNA content and ion accumulation in common bean (Phaseolus vulgaris L.) cultivated under salinity stress. An experimental design was split-plot with three replicates. The main plots included two P sources, namely single superphosphate (SP) and urea phosphate (UP). The sub-plots covered four P rates, i.e., 0.0, 17.5, 35.0, and 52.5 kg P ha-1. All applied P fertilization rates, in both forms, increased plant height, leaf area, dry weight of shoots and roots per plant, and total dry weight (TDW) in t ha-1. The highest accumulation of N, P, K+, Mg2+, Mn2+, Zn2+, and Cu2+ was determined in the shoot and root of common bean, while 35 kg of P per ha-1 was used compared to the other levels of P fertilizer. The highest P rate (52.5 kg ha-1) resulted in a significant reduction in Na+ in shoot and root of common bean. The response curve of TDW (t ha-1) to different rates of P (kg ha-1) proved that the quadratic model fit better than the linear model for both P sources. Under SP, the expected TDW was 1.675 t ha-1 if P was applied at 51.5 kg ha-1, while under UP, the maximum expected TDW was 1.875 t ha-1 if P was supplied at 42.5 kg ha-1. In conclusion, the 35.0 kg P ha-1 could be considered the best effective P level imposed. The application of P fertilizer as urea phosphate is generally more effective than single superphosphate in enhancing plant growth and alleviating common bean plants against salinity stress.

8.
Plant Physiol Biochem ; 158: 43-52, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33296845

RESUMO

Globally, salinity threatens the agricultural crops productivity by inhibiting plant growth and development through osmotic stress and ionic cytotoxicity. The polygenic nature of salinity offers several pragmatic shotgun approaches to improve salinity tolerance. The present study investigated the potential of glutathione (GSH; 1 mM) as an antioxidant and moringa leaf extract (MLE; 3%) as an organic biostimulant applied in sequence as seed priming and foliar spray on wheat growth, physiology and metabolic adaptation under saline conditions (9.16 dS m-1). Plants without any treatment and water spray (H2O) were considered controls. Salinity induced osmotic stress reduced the plant tissue water status and photosynthetic performance, and perturbed ionic (K+/Na+, Ca2+/Na+, K++Ca2+/Na+) and hormonal (IAA, GA3, zeatin, ABA) homeostasis, consequently affected growth and yield in wheat. Sequenced applied MLE and/or GSH improved osmotic stress tolerance by stabilizing membrane integrity and decreasing electrolyte leakage. These positive results were owed to enhanced endogenous GSH and ascorbate levels. Improved tissue water status was attributed to increased osmotic adjustment, better ionic and hormonal homeostasis contributed to improving photosynthetic efficiency and growth under salinity. Exogenously applied MLE and GSH sequences improved grain yield, which was attributed to the maintenance of green leaf area and delayed senescence associated with an increase in photosynthetic pigments and chlorophyll fluorescence traits. In crux, exogenous applied MLE and/or GSH can be the best physiological strategy to reduce the deleterious effects of salinity and improve physiological and metabolic adaptation in wheat under saline field conditions.


Assuntos
Antioxidantes/farmacologia , Glutationa/farmacologia , Extratos Vegetais/farmacologia , Estresse Salino , Triticum/fisiologia , Adaptação Fisiológica , Moringa/química , Fotossíntese
9.
Molecules ; 25(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212772

RESUMO

Melatonin (MT) is a pleiotropic molecule with diverse and numerous actions both in plants and animals. In plants, MT acts as an excellent promotor of tolerance against abiotic stress situations such as drought, cold, heat, salinity, and chemical pollutants. In all these situations, MT has a stimulating effect on plants, fomenting many changes in biochemical processes and stress-related gene expression. Melatonin plays vital roles as an antioxidant and can work as a free radical scavenger to protect plants from oxidative stress by stabilization cell redox status; however, MT can alleviate the toxic oxygen and nitrogen species. Beyond this, MT stimulates the antioxidant enzymes and augments antioxidants, as well as activates the ascorbate-glutathione (AsA-GSH) cycle to scavenge excess reactive oxygen species (ROS). In this review, we examine the recent data on the capacity of MT to alleviate the effects of common abiotic soil stressors, such as salinity, alkalinity, acidity, and the presence of heavy metals, reinforcing the general metabolism of plants and counteracting harmful agents. An exhaustive analysis of the latest advances in this regard is presented, and possible future applications of MT are discussed.


Assuntos
Melatonina/farmacologia , Metais Pesados/toxicidade , Plantas/metabolismo , Salinidade , Solo/química , Estresse Fisiológico , Concentração de Íons de Hidrogênio , Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
10.
Exp Appl Acarol ; 82(2): 243-254, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32897464

RESUMO

Four silica-based acaricides were examined in laboratory tests for their effectiveness against poultry red mite, Dermanyssus gallinae. All acaricides resulted in 100% mite mortality. Two groups of active ingredients could be differentiated. The products Silicosec® and Ewazid®, based on naturally occurring diatomaceous earth (DE), killed 100% of adult D. gallinae within 48 h exposure time. The time to kill 50% of the mites (LT50) was calculated to be 31.7 and 34.9 h, respectively. The other two products, containing aggregates and agglomerates of pyrogenic synthetic amorphous silicon dioxide as active ingredients, killed the mites in a significantly shorter time: LT50 was 6.3 h for the liquid product Fossil Shield® Instant White and 11.8 h for the powdery product Fossil Shield 90.0 White. This is more remarkable as the quantities of active ingredients used for the DE treatments were several folds higher. The effectiveness of all tested products was also shown in practical tests. A professional company treated five chicken houses on one farm in the Berlin-Brandenburg region with the test products, three houses with Fossil Shield Instant White and one each with Ewazid and Silicosec. Over a period of 46 weeks after stocking, the mite development in the houses was assessed. Only in one of the houses, treated with Fossil Shield Instant White, the mite population remained permanently low. In two houses treated with Fossil Shield Instant White, small mite colonies appeared in week 36, which were controlled by a follow-up spot treatment in week 41. In the houses treated with DE, the first mite colonies appeared 12 weeks after stocking. The number increased continuously over the experimental period and in week 31 after stocking there were clearly visible colonies (2-3 cm diameter) and the first mites could also be detected on the chicken eggs. At this time both houses were treated again with a follow-up spot-treatment, which only led to a slight improvement in one house and to a stabilization of the infestation in the other house. In week 41, large mite colonies were detected in both houses. A spot treatment at this point was ineffective in reducing the infestation. The tests showed faster acaricidal action of the products with the synthetic active ingredients compared to the natural DE-based products. This matches the shorter killing times under laboratory conditions. The experiments in a commercial chicken farm showed that it is possible to control the mite population for a period of 46 weeks by using physically effective SiO2-based products. These products are therefore an effective alternative to the use of chemical acaricides.


Assuntos
Acaricidas , Infestações por Ácaros/veterinária , Ácaros , Doenças das Aves Domésticas/prevenção & controle , Dióxido de Silício , Animais , Galinhas/parasitologia , Infestações por Ácaros/prevenção & controle , Aves Domésticas/parasitologia , Doenças das Aves Domésticas/parasitologia
11.
Plants (Basel) ; 9(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423048

RESUMO

One of the most vital environmental factors that restricts plant production in arid and semi-arid environments is the lack of fresh water and drought stress. Common bean (Phaseolus vulgaris L.) productivity is severely limited by abiotic stress, especially climate-related constraints. Therefore, a field experiment in split-plot design was carried out to examine the potential function of ascorbic acid (AsA) in mitigating the adverse effects of water stress on common bean. The experiment included two irrigation regimes (100% or 50% of crop evapotranspiration) and three AsA doses (0, 200, or 400 mg L-1 AsA). The results revealed that water stress reduced common bean photosynthetic pigments (chlorophyll and carotenoids), carbonic anhydrase activity, antioxidant activities (2,2-diphenyl-1-picrylhydrazyl free radical activity scavenging activity and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation assay), growth and seed yield, while increased enzymatic antioxidants (peroxidase), secondary metabolites (phenolic, flavonoids, and tannins), malondialdehyde (MDA), and crop water productivity. In contrast, the AsA foliar spray enhanced all studied traits and the enhancement was gradual with the increasing AsA dose. The linear regression model predicted that when the AsA dose increase by 1.0 mg L-1, the seed yield is expected to increase by 0.06 g m-2. Enhanced water stress tolerance through adequate ascorbic acid application is a promising strategy to increase the tolerance and productivity of common bean under water stress. Moreover, the response of common bean to water deficit appears to be dependent on AsA dose.

12.
Plants (Basel) ; 9(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059414

RESUMO

Two pot experiments were conducted in a greenhouse to examine 14C fixation and its distribution in biochemical leaf components, as well as the physiological and anatomical adaptability responses of wheat (Triticum aestivum L.) grown with seawater diluted to 0.2, 3.0, 6.0, and 12.0 dS m-1. The results showed significant reductions in chlorophyll content, 14C fixation (photosynthesis), plant height, main stem diameter, total leaf area per plant, and total dry weight at 3.0, 6.0, and 12.0 dS m-1 seawater salt stress. The 14C loss was very high at 12.0 ds m-1 after 120 h. 14C in lipids (ether extract) showed significant changes at 12.0 dS m-1 at 96 and 120 h. The findings indicated the leaf and stem anatomical feature change of wheat plants resulting from adaptation to salinity stress. A reduction in the anatomical traits of stem and leaf diameter, wall thickness, diameter of the hollow pith cavity, total number of vascular bundles, number of large and small vascular bundles, bundle length and width, thickness of phloem tissue, and diameter of the metaxylem vessel of wheat plants was found. In conclusion, salt stress induces both anatomical and physiological changes in the stem and leaf cells of wheat, as well as the tissues and organs, and these changes in turn make it possible for the plants to adapt successfully to a saline environment.

13.
J Plant Res ; 132(6): 881-901, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31606785

RESUMO

Water stress reduces crop production significantly, and climate change has further aggravated the problem mainly in arid and semi-arid regions. This was the first study on the possible effects of ß-sitosterol application in ameliorating the deleterious changes in wheat induced by water stress under field condition and drip irrigation regimes. A field experiment with the split-plot design was conducted, and wheat plants were foliar sprayed with four ß-sitosterol (BBS) concentrations (0, 25, 75, and 100 mg L-1) and two irrigation regimes [50 and 100% of crop evapotranspiration (ETc)]. Water stress without BBS treatment reduced biological yield, grain yield, harvest index, and photosynthetic efficiency significantly by 28.9%, 42.8%, 19.6%, and 20.5% compared with the well-watered plants, respectively. Proline content increased in water-stressed and BSS-treated plants, owing to a significant role in cellular osmotic adjustment. Application of BSS was effective in reducing the generation of hydrogen peroxide (H2O2) and hence the malondialdehyde content significantly in water-stressed and well-watered wheat plants. Application of BSS up-regulated the activity of antioxidant enzymes (SOD, CAT, POD, and APX) significantly and increased the content of tocopherol, ascorbic acid, and carotene thereby reducing the levels of reactive oxygen species. The increased antioxidant system in BSS treated plants was further supported by the expression level of SOD and dehydrin genes in both water-stressed and well-watered plants. In the present study, the application of BBS at 100 mg L-1 was beneficial and can be recommended for improving the growth and yield of the wheat crop under water stress.


Assuntos
Antioxidantes/metabolismo , Secas , Substâncias Protetoras/administração & dosagem , Sitosteroides/administração & dosagem , Triticum/fisiologia , Relação Dose-Resposta a Droga , Distribuição Aleatória , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Regulação para Cima/efeitos dos fármacos
14.
Acta biol. colomb ; 20(1): 141-152, ene.-abr. 2015. ilus, tab
Artigo em Inglês | LILACS | ID: lil-734907

RESUMO

Salinity decreases yield in arid and semi-arid areas. With increasing demand for irrigation water, alternative sources are being sought. Seawater salinity was previously considered unusable for irrigation. However, this water can be used successfully to grow crops under certain conditions. Amino acids is well known biostimulant which has positive effects on plant growth and yield, and significantly mitigates the injuries caused by abiotic stresses. Therefore, in the present study, the effect of exogenously treatment amino acid on faba bean plant growing under seawater salt stress was investigated. Reduction of salinity damage in faba bean by using a mixture of amino acids to improve morphological and biochemical parameters, and thus raising the level of plant yield was tested. A pot experiment was conducted to alleviate the harmful effects of seawater salinity on faba bean cv. Giza 843 by foliar spraying of an amino acid mixture with different concentrations (0.0, 500, 1000 or 1500 mg L-1). Irrigation of faba bean plants with seawater levels of 3.13 and 6.25 dS m-1 led to significant reductions in shoot length, number of leaves per plant, fresh and dry weight of shoots, photosynthetic pigments, total carbohydrates, polysaccharides, nucleic acid DNA and RNA contents of faba bean leaves. Seawater salinity induced higher contents of Na+ and Cl- and decreased contents of K+, K+:Na+, Ca2+, Mg2+ and P3+. Irrigation of faba bean plant with different levels of seawater decreased seed yield and total dry weight per plant compared with those irrigated with tap water. Also, total carbohydrates and total protein contents in seeds were reduced by increased seawater salinity levels. Amino acid application as foliar spray significantly improved all the reduced parameters due to seawater stress. However, the highest level of amino acid of 1500 mg L-1 exerted the strongest effect in alleviating the harmful effect of seawater salinity stress.


La salinidad disminuye el rendimiento en zonas áridas y semiáridas. Con el aumento de la demanda de agua de riego, se están buscando fuentes alternativas. El agua de mar se consideró previamente inutilizable para irrigación debido a su salinidad. Sin embargo, esta agua puede ser utilizada con éxito en cultivos bajo ciertas condiciones. Los aminoácidos son bioestimulantes bien conocidos por sus efectos positivos sobre el crecimiento y rendimiento, y por mitigar significativamente las lesiones causadas por estrés abióticos. Por lo tanto, en el presente studio se investigó el efecto del tratamiento exógeno con aminoácidos sobre plantas de haba que crecen bajo estrés salino por irrigación con agua de mar. Se evaluó la reducción de daños por salinidad en plantas de haba mediante el uso de una mezcla de aminoácidos para mejorar los parámetros morfológicos y bioquímicos, y por lo tanto elevar el nivel de rendimiento de la planta. Se desarrolló un experimento en macetas para paliar los efectos nocivos de la salinidad del agua de mar en el haba cv. Giza 843 por aspersion foliar de una mezcla de aminoácidos con diferentes concentraciones (0, 500, 1000 o 1500 mg L-1). El riego de plantas de haba con niveles de agua de mar de 3.13 y 6.25 dS m-1 condujo a reducciones significativas en la altura de planta, número de hojas de la planta, peso fresco y seco de los brotes, y en el contenido foliar de pigmentos fotosintéticos, carbohidratos totales, polisacáridos y ácidos nucleicos (ADN y ARN). La salinidad del agua de mar indujo un mayor contenido de Na+ y Cl-, y una disminución del contenido de K+, K+: Na+, Ca2+, Mg2+ y P3+. El riego de plantas de haba con diferentes niveles de agua de mar redujo el rendimiento de semillas y el peso seco total por planta en comparación con las regadas con agua corriente. Además, el contenido de carbohidratos y proteína total en las semillas disminuyeron con el aumento de los niveles de salinidad del agua de mar. La aplicación de aminoácidos por aspersion foliar increment significativamente todos los parámetros reducidos debido al estrés por agua de mar. Sin embargo, el más alto nivel de aminoácidos (1500 mg L-1) ejerce el máximo efecto en el alivio de los efectos nocivos de estrés por salinidad del agua de mar.

15.
Acta biol. colomb ; 18(2): 239-250, May-Aug. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-685931

RESUMO

Soybean (Glycine max L.), is the most important pulse crop in the world. Soybean is a very energy-rich grain legume containing 40 percent protein and 19 percent oil in the seeds. The magnitude of soybean yield losses due to nutrient deficiency also varies among the nutrients. Deficiencies of N, P, Fe, B and S nutrients may cause yield losses up to 10 %, 29-45 %, 22-90 %, 100 % and 16-30 %, respectively, in soybean depending on soil fertility, climate and plant factors. Soil salinity is one of the major limiting factors of soybean production in semiarid regions, and chloride salinity has a more depressive effect on yield than sulphate salinity. The goal of nutrient management is to maximize soybean productivity while minimizing environmental consequences. Balanced and timely nutrient management practices applied for soybean contributes to sustainable growth of yield and quality, influences plant health and reduces environmental risks. Balanced nutrition with mineral fertilizers can assist in integrated pest management to reduce damage from infestations of pests and diseases and save inputs required to control them. Balanced fertilization generates higher profits for the farmers, not necessarily through reduced inputs. The role of education and extension in delivering the up-to-date knowledge on nutrient management is crucial, challenging, and continuous.


La soya (Glycine max L.), es el cultivo de legumbres más importante en el mundo. La magnitud de las pérdidas en el rendimiento de la soya debido a deficiencias varía dependiendo de los nutrientes. Las deficiencias de N, P, Fe, B y S pueden causar pérdidas en rendimiento de hasta 10 %, 29-45 %, 22-90 %, 100 % y 16-30 %, respectivamente, en la soya dependiendo de la fertilidad del suelo, clima y factores intrínsecos a las plantas. La textura de los suelos utilizados en el cultivo de soya varía entre arenosa y arcillosa. La salinidad del suelo es uno de los mayores factores limitantes en la producción del cultivo en regiones semiáridas, y la salinidad por cloro tiene un mayor efecto en la disminución del rendimiento que la salinidad por sulfatos. Los granos de soya son una gran fuente de energía que contienen 40 % de proteína y 19 % de aceite. El éxito del manejo de nutrientes es maximizar la productividad del cultivo mientras se minimizan los impactos ambientales. Las prácticas de manejo de nutrientes balanceadas y reguladas en el tiempo contribuyen a un crecimiento sostenido del rendimiento y la calidad, influencian la salud de las plantas y reducen los riesgos ambientales. Una nutrición balanceada con fertilizantes minerales puede ayudar en el manejo integrado de plagas para reducir los daños causados por las infestaciones de pestes y enfermedades y reducir los insumos requeridos para su control. Una fertilización balanceada genera mayores ganancias para los agricultores, no necesariamente por reducción de los insumos. El papel de la educación y la extensión en la difusión del conocimiento actual sobre manejo de nutrientes es crucial, desafiante y continuo.

16.
Bioresour Technol ; 93(2): 183-9, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15051080

RESUMO

Composting of rice straw with poultry manure and oilseed rape cake and its effects on growth and yield of faba bean and soil properties was studied in pot experiments at Gifu University, Japan in 2001/2002. The composts reached maturity in 90 days, were rich in organic matter and mineral nutrients, had a high level of stability, and no phytotoxicity. The addition of compost (20-200 g pot(-1)) improved selected soil chemical (increased total N, total C and CEC), physical (decreased particle density) and biological (increased soil respiration rate) properties. Application of composts at a rate of 20 g pot(-1) significantly increased growth, yield, yield components and total crude protein of faba bean plants. The benefit of this compost without chemical fertilizer demonstrated the validity and possibility of sustainable agronomic performance of faba bean using locally available recycled organic materials.


Assuntos
Agricultura/métodos , Solo/análise , Vicia faba/crescimento & desenvolvimento , Carbono , Ácidos Graxos Monoinsaturados , Esterco , Nitrogênio , Oryza , Óleos de Plantas , Óleo de Brassica napus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...